यदि ${ }^{ n } P _{ r }={ }^{ n } P _{ r +1}$ तथा ${ }^{ n } C _{ r }={ }^{ n } C _{ I -1}$ है, तो $r$ बराबर है
$3$
$1$
$4$
$2$
किसी परीक्षा में तीन वस्तुनिष्ठ प्रश्न हैं तथा प्रत्येक प्रश्न में $4$ विकल्प हैं। उन तरीकों की संख्या जिसमें कोई विद्यार्थी सभी प्रश्नों का उत्तर सही न दे सके, है
$2 \le r \le n$ केलिए,$\left({\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
छ: ‘$+$’ व चार ‘$-$’ चिन्हों को एक सरल रेखा में कुल कितने प्रकार से रखा जा सकता है यदि दो ‘$-$’ कभी भी साथ न आयें
एक व्यक्ति $(2n + 1)$ सिक्कों में से कम से कम एक तथा अधिकतम $n$ सिक्के चुन सकता है यदि वह सिक्कों को कुल $255$ प्रकार से चुन सकता है, तो $n$ का मान होगा
$22$ खिलाड़ियों में से $10$ खिलाड़ियों की एक टीम कितने प्रकार से बनाई जा सकती है, जबकि $6$ विशेष खिलाड़ी सदैव टीम में सम्मिलित रहें तथा $4$ विशेष खिलाड़ी सदैव टीम से बाहर रहें