एक वृत्त जिसका केन्द्र $(2,3)$ है तथा त्रिज्या $4$ है, रेखा $\mathrm{x}+\mathrm{y}=3$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटता है। यदि $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $S(\alpha, \beta)$ पर मिलती हैं तो $4 \alpha-7 \beta$ बराबर है___________.
$11$
$10$
$80$
$90$
निम्नांकित चित्र में $A B C D$ एक इकाई वर्ग है। विस्तारित $C D$ रेखा पर $O$ केंद्र वाला $A$ से गुजरता हुआ एक वृत्त खींचा जाता है। यदि विकर्ण $A C^{\circ}$ वृत्त पर स्पर्शज्या है, तब छायांकित क्षेत्र का क्षेत्रफल होगा
वृत्त ${x^2} + {y^2} - 2x - 6y + 9 = 0$ की स्पर्श रेखा $x = 0$, अर्थात् $y$-अक्ष पर किस बिन्दु पर होगी
माना कि $S$ एक वृत्त (circle) है जो $x y$-समतल (plane) में समीकरण (equation) $x^2+y^2=4$ के द्वारा परिभाषित है।
($1$) माना कि $E_1 E_2$ और $F_1 F_2$ वृत्त $S$ की ऐसी जीवायें (chords) हैं जो बिंदु $P_0(1,1)$ से गुजरती हैं और क्रमश: $x$-अक्ष (axis) व $y$-अक्ष के समान्तर (parallel) हैं। माना कि $G_1 G_2, S$ की वह जीवा है जो $P_0$ से गुजरती है और जिसकी प्रवणता (slope) -$1$ है। माना कि $E_1$ और $E_2$ पर $S$ की स्पर्शियाँ (tangents) $E_3$ पर मिलती हैं, $F_1$ और $F_2$ पर $S$ की स्पर्शियाँ $F_3$ पर मिलती हैं, तथा $G_1$ और $G_2$ पर $S$ की स्पर्शियाँ $G_3$ पर मिलती हैं। तब वह वक्र (curve) जिस पर बिंदु $E_3, F_3$ और $G_3$ स्थित हैं, है
$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$
($2$) माना कि $P$ वृत्त $S$ पर स्थित एक ऐसा बिंदु है जिसके दोनों निर्देशांक (coordinates) धनात्मक (positive) हैं। माना कि वृत्त $S$ के बिंदु $P$ पर स्पर्शी (tangent) निर्देशांक अक्षों (coordinate axes) को बिन्दुओं $M$ और $N$ पर प्रतिच्छेद (intersects) करती है। तब वह वक्र (curve) जिस पर रेखाखंड (line segement) $M N$ का मध्य बिंदु (mid-point) अनिवार्य रूप से स्थित है, है
$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
यदि $2x - 4y = 9$ व $6x - 12y + 7 = 0$ एक ही वृत्त की स्पर्श रेखायें हों, तो इसकी त्रिज्या होगी
यदि एक रेखा $y = mx + c$ वृत्त $( x -3)^{2}+ y ^{2}=1$ की एक स्पर्श रेखा है तथा यह एक रेखा $L_{1}$ पर लम्ब है, जहाँ $L_{1}$ वृत्त $x ^{2}+ y ^{2}=1$ के बिन्दु $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ पर स्पर्श रेखा है, तो