A circle with centre $(2,3)$ and radius $4$ intersects the line $x + y =3$ at the points $P$ and $Q$. If the tangents at $P$ and $Q$ intersect at the point $S(\alpha, \beta)$, then $4 \alpha-7 \beta$ is equal to $........$.
$11$
$10$
$80$
$90$
Let the tan gents drawn to the circle, $x^2 + y^2 = 16$ from the point $P(0, h)$ meet the $x-$ axis at point $A$ and $B.$ If the area of $\Delta APB$ is minimum, then $h$ is equal to
If a circle, whose centre is $(-1, 1)$ touches the straight line $x + 2y + 12 = 0$, then the coordinates of the point of contact are
A circle $C_{1}$ passes through the origin $O$ and has diameter $4$ on the positive $x$-axis. The line $y =2 x$ gives a chord $OA$ of a circle $C _{1}$. Let $C _{2}$ be the circle with $OA$ as a diameter. If the tangent to $C _{2}$ at the point $A$ meets the $x$-axis at $P$ and $y$-axis at $Q$, then $QA : AP$ is equal to.
Length of the tangent from $({x_1},{y_1})$ to the circle ${x^2} + {y^2} + 2gx + 2fy + c = 0$ is
The angle of intersection of the circles ${x^2} + {y^2} - x + y - 8 = 0$ and ${x^2} + {y^2} + 2x + 2y - 11 = 0,$ is