एक गेंद जिसकी गतिज ऊर्जा E है, क्षैतिज से $45°$ पर फेंकी जाती है। इसकी उड़ान के दौरान उच्चतम बिन्दु पर गतिज ऊर्जा होगी
शून्य
$\frac{E}{2}$
$\frac{E}{{\sqrt 2 }}$
$E$
जब एक कण $15^°$ के कोण पर प्रक्षेपित किया जाता है, तो इसकी क्षैतिज परास $1.5$ किमी है। यदि इसे $45^°$ के कोण पर प्रक्षेपित करें, तो क्षैतिज परास ....... $km$ होगी
एक कण किसी समतल में नियत त्वरण से किन्तु प्रारंभिक वेग की दिशा से भिन्न दिशा में गति करता है। कण का बिन्दुपथ होगा
एक $10\, m$ ऊँची इमारत की छत पर खेल रहा एक लड़का एक गेंद को $30^o$ के कोण पर क्षैतिज के साथ $10\, m/s$ की गति से फेंकता है। ........ $m$ फेंकने के बिंदु से दूर गेंद जमीन से $10\, m$ की ऊंचाई पर होगी। $(g \,= \,10 m/s^2, \,sin \,30^o \,= \,\frac{1}{2}$, $\cos \,{30^o}\, = \,\frac{{\sqrt 3 }}{2}$)
$5 \,g$ द्रव्यमान के कण की प्रक्षेप गति को चित्र द्वारा दर्शाया गया है:
वायु के प्रतिरोध को उपेक्षणीय मानते हुए, कण का प्रारम्भिक वेग $5 \sqrt{2}\, ms ^{-1}$ है। बिन्दुओं $A$ और $B$ के मध्य संवेग के परिमाण में हुए, परिवर्तन का मान $x \times 10^{-2} \,kgms ^{-1}$ है। $x$ का मान निकटतम पूर्णांक में $.........$ है ।
एक क्रिकेट खिलाड़ी क्षैतिज से $60^o$ के कोण पर एक गेंद को $25$ मी/सै के वेग से मारता है खिलाड़ी से $50$ मी दूर खड़े दूसरे खिलाड़ी तक पहुँचने में गेंद जमीन से ........ $m$ ऊँची उठी होगी (यह माना गया है कि गेंद को जमीन के काफी निकट से मारा जाता है)