एक क्रिकेट खिलाड़ी क्षैतिज से $60^o$ के कोण पर एक गेंद को $25$ मी/सै के वेग से मारता है खिलाड़ी से $50$ मी दूर खड़े दूसरे खिलाड़ी तक पहुँचने में गेंद जमीन से ........ $m$ ऊँची उठी होगी (यह माना गया है कि गेंद को जमीन के काफी निकट से मारा जाता है)
$8.2$
$9.0$
$11.6$
$12.7$
एक तोप क्षैतिज तल पर रखी है और $\theta $ कोण बनाते हुये ${v_0}$ वेग से एक गोले को प्रक्षेपित करती है। तोप से $D$ दूरी पर एक ऊध्र्वाधर चट्टान है। तल से कितनी ऊँचाई पर गोला चट्टान से टकरायेगा
यदि एक प्रक्षेप्य का प्रारम्भिक वेग दोगुना कर दिया जावे तथा प्रक्षेपण कोण वही रहे, तो उसकी महत्तम ऊँचाई
वायु प्रतिरोध को नगण्य मानने पर प्रक्षेप्य का उड्डयन काल किसके द्वारा ज्ञात किया जाता है
नीचे दो कथन दिए गए है। एक को अभिकथन-A तथा दूसरे को कारण $R$ के रूप में अंकित किया गया है।
अभिकथन $A$ : दो एक जैसी गेंदे $A$ व $B$ समान वेग ' $u$ ' से क्षैतिज के साथ अलग अलग कोण पर फैंकी जाती है तो समान परास $R$ प्राप्त होती है। यदि $A , B$ अधिकतम ऊँचाई क्रमश: $h _1$ और $h _2$ तक पहुंच जाती है, तो $R =4 \sqrt{ h _1 h _2}$ होगा।
कारण $R:$ ऊँचाईयों का गुणनफल $h _1 h _2=\left(\frac{ u ^2 \sin ^2 \theta}{2 g }\right) \cdot\left(\frac{ u ^2 \cos ^2 \theta}{2 g }\right)$
सही उत्तर चुनें-
किसी प्रक्षेप्य की क्षैतिज परास उसकी महत्तम ऊँचाई की चार गुनी है। प्रक्षेपण कोण का मान ....... $^o$ है