$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ નું $0\, \le \,\theta\, \le \, \pi$ માં વાસ્તવિક ઉકેલોની સંખ્યા ................ છે
$2$
$4$
$6$
$8$
જો $sin\, \theta = sin\, \alpha$ હોય તો $sin\, \frac{\theta }{3}$ =
જો $\cos p\theta = \cos q\theta ,p \ne q$, તો
$\sin 7\theta = \sin 4\theta - \sin \theta $ અને $0 < \theta < \frac{\pi }{2}$ તેવી $\theta $ ની કિમતો મેળવો.
જો $\cos 2\theta + 3\cos \theta = 0$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ ના ઉકેલની સંખ્યા મેળવો.