$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :
$2$ real solutions
$4$ real solutions
$6$ real solutions
$8$ real solutions.
The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is
If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)
The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ is
Number of solution $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ in $\left[ {0,\frac{\pi }{3}} \right]$ is