જો $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi + \frac{\pi }{5}$
$\left( {n + \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {2n \pm \frac{1}{6}} \right)\frac{\pi }{5}$
$\left( {n + \frac{1}{3}} \right)\frac{\pi }{5}$
$tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ માટે $\theta$ ની $(0, 2\pi )$ માં ઉકેલોની સંખ્યા ........... થાય
જો સમીકરણ $0 \le x < 2\pi $ તો સમીકરણ $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ ને સંતોષતી $x$ ની વાસ્તવિક કિંમતોની સંખ્યા . . . . . .છે.
$2\,{\sin ^3}\,\alpha - 7\,{\sin ^2}\,\alpha + 7\,\sin \,\alpha = 2$ ના સમાધાન માટે $\alpha $ની કિંમત $[0, 2\pi]$ માં કેટલી મળે ?
જો $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.