${\sin ^2}\theta + \sin \theta = 2$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi + {( - 1)^n}\frac{\pi }{6}$
$2n\pi + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{2}$
$n\pi + {( - 1)^n}\frac{\pi }{3}$
જો $\tan m\theta = \tan n\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos 2\theta + 3\cos \theta = 0$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, કે જ્યાં $0 < \theta < {180^o}$, તો $\theta =$
સમીકરણ ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ ઉકેલ તોજ શકય જો . . ..