$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
${a^3} + {b^3} + {c^3} - 3abc$
${a^3} + {b^3} + {c^3} + 3abc$
$(a + b + c)(a - b)(b - c)(c - a)$
इनमें से कोई नहीं
$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha + 1)^3}x + {(\alpha + 2)^3}y - {(\alpha + 3)^3} = 0$, $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0,$ $x + y - 1 = 0$ संगत है
सारणिक $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$ का मान है
निम्न रैखिक समीकरणों का निकाय $3 x -2 y - kz =10$ ; $2 x -4 y -2 z =6$ ; $x +2 y - z =5 m$ असंगत है यदि
अंतराल $(0,4 \pi)$ में $\theta$ के मानों, जिनके लिए रैखिक समीकरण निकाय
$3(\sin 3 \theta) x-y+z=2$
$3(\cos 2 \theta) x+4 y+3 z=3$
$6 x+7 y+7 z=9$
का कोई हल नहीं है, की संख्या है:
यदि ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ और ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ हो, तब