$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    ${a^3} + {b^3} + {c^3} + 3abc$

  • C

    $(a + b + c)(a - b)(b - c)(c - a)$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $a \ne p,b \ne q,c \ne r$ और $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$0,$ तो $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $

माना $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, तो

  • [IIT 1998]

किसी $\Delta ABC$ में, यदि $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, तो ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

यदि समीकरण निकाय $2 x +3 y - z =0$, $x + ky -2 z =0$ तथा $2 x - y + z =0$ का एक अतुच्छ (non-trival) हल $( x , y , z )$ है, तो $\frac{ x }{ y }+\frac{ y }{ z }+\frac{ z }{ x }+ k$ बराबर है

  • [JEE MAIN 2019]

माना $P$ तथा $Q, 3 \times 3$ आव्यूह हैं तथा $P \neq Q$ है। यदि $P^{3}=Q^{3}$ तथा $P^{2} Q=Q^{2} P$ है, तो सारणिक $\left(P^{2}+Q^{2}\right)$ बराबर है

  • [AIEEE 2012]