सारणिक $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$ का मान है
$20$
$10$
$0$
$250$
$\theta \in(0, \pi)$ के मानों की संख्या, जिसके लिये रेखीय समीकरण निकाय $x+3 y+7 z=0$, $-x +4 y +7 z =0$, $(\sin 3 \theta) x +(\cos 2 \theta) y +2 z =0$ के अनिरर्थक हल हो, होगी
यदि $A =\left[\begin{array}{ccc}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right],$ हो तो $| A |$ ज्ञात कीजिए।
सारणिक $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ निम्न के द्वारा विभाज्य नहीं है
समीकरण निकाय $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$ का एक अशून्य हल होगा, यदि $\lambda $ का वास्तविक मान है
समीकरण के निकाय ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ का हल होगा