$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    ${a^3} + {b^3} + {c^3} + 3abc$

  • C

    $(a + b + c)(a - b)(b - c)(c - a)$

  • D

    None of these

Similar Questions

If the system of equations $x + 2y + 3z = 4 , x + py + 2z = 3 , x + 4y + \mu z = 3$ has an infinite number of solutions , then :

$S$ denote the set of all real values of $\lambda$ such that the system of equations  $\lambda x + y + z =1$ ; $x +\lambda y + z =1$ ; $x + y +\lambda z =1$ is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^2+|\lambda|\right)$ is equal to

  • [JEE MAIN 2023]

If the system of equation $2 x+\lambda y+3 z=5$, $3 x+2 y-z=7$, $4 x+5 y+\mu z=9$ has infinitely many solutions, then $\left(\lambda^2+\mu^2\right)$ is equal to :

  • [JEE MAIN 2025]

If $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, then the value of $A $ is

  • [JEE MAIN 2015]

Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
 ; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation

  • [JEE MAIN 2019]