$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
$a(x + y + z) + b(p + q + r) + c$
$0$
$abc + xyz + pqr$
એકપણ નહી.
જેના માટે $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ થાય તેવી $\alpha$ ની કિંમત..................... અંતરાલમાં આવે છે.
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
$\Delta ABC$ માં , જો $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, તો ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
જો સમીકરણ સંહિતા
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$ ને અનંત ઉકેલો હોય તો
જો $a \ne 6,b,c$ એ $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0 $ નું સમાધાન કરે છે તો $abc = $