$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
$a(x + y + z) + b(p + q + r) + c$
$0$
$abc + xyz + pqr$
None of these
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
Consider system of equations $ x + y -az = 1$ ; $2x + ay + z = 1$ ; $ax + y -z = 2$
Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List - $I$ to the correct entries in List-$II$
List - $I$ | List - $II$ |
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has | ($1$) a unique solution |
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has | ($2$) no solution |
($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has |
($3$) infinitely many solutions |
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has | ($4$) $x=11, y=-2$ and $z=0$ as a solution |
($5$) $x=-15, y=4$ and $z=0$ as a solution |
Then the system has
If the system of equations, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$is inconsistent, then the value of $ k$ is
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{{\omega ^2}}&\omega \\1&\omega &{{\omega ^2}}\end{array}\,} \right| = $