$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $

  • A

    $a(x + y + z) + b(p + q + r) + c$

  • B

    $0$

  • C

    $abc + xyz + pqr$

  • D

    None of these

Similar Questions

The number of $\theta \in(0,4 \pi)$ for which the system of linear equations

$3(\sin 3 \theta) x-y+z=2$, $3(\cos 2 \theta) x+4 y+3 z=3$, $6 x+7 y+7 z=9$ has no solution is.

  • [JEE MAIN 2022]

If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and  $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to

  • [JEE MAIN 2019]

If the system of equations  $2 x+3 y-z=5$  ;  $x+\alpha y+3 z=-4$  ;  $3 x-y+\beta z=7$ has infinitely many solutions, then $13 \alpha \beta$ is equal to

  • [JEE MAIN 2024]

If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ;  $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is

  • [JEE MAIN 2019]

If $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ are three digit number each of which is divisible by $k$ and $\Delta  = \left| {\begin{array}{*{20}{c}}
  {{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\ 
  {{A_2}}&{{B_2}}&{{C_2}} \\ 
  {{A_3}}&{{B_3}}&{{C_3}} 
\end{array}} \right|$ ; then $\Delta $ is divisible by