$\Delta ABC$ માં , જો $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, તો ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $
$\frac{9}{4}$
$\frac{4}{9}$
$1$
$3\sqrt 3 $
સુરેખ સમીકરણ સંહતિ $x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$ ધ્યાને લો, જ્યાં $\lambda, \mu \in \mathbb{R}$. તો નીચેના પૈકકી કયું વિધાન સાચું નથી?
જો $\left| {\begin{array}{*{20}{c}}
{\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\
{{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\
{\cos 4x}&{{{\cos }^2}x}&{\cos 2x}
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ તો $a_0$ મેળવો.
ધારો કે સુરેખ સમીકરણ સંહતિ $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ સુસંગત નથી.તો $\alpha=\dots\dots\dots\dots$
$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ નું મૂલ્ય શોધો.
ધારો કે સુરેખ સમીકરણ સંહતિ
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
ને અનન્ય ઉએેલ $\left( x ^{*}, y ^{*}, z ^{*}\right)$ છે. જો $\left(\alpha, x ^{*}\right),\left( y ^{*}, \alpha\right)$ અને $\left( x ^{*},- y ^{*}\right)$ તો $\alpha$સમરેખ બિંદુઓ હોય. તો $\alpha$ ની તમામ શક્ય કિંમતોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો ........ છે.