$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $

  • A

    $\frac{{{2^n}}}{{n + 1}}$

  • B

    $\frac{{{2^n} - 1}}{{n + 1}}$

  • C

    $\frac{{{2^{n + 1}} - 1}}{{n + 1}}$

  • D

    એકપણ નહિ.

Similar Questions

 $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ ના વિસ્તરણમાં $x^9$ નો સહગુણક મેળવો 

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . . 

${(1 + x)^n}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

જો ગુણાકાર $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ માં $x$ ની બધીજ યુગ્મ ઘાતાંકનો સરવાળો $61,$ હોય તો  $\mathrm{n}$ મેળવો.

  • [JEE MAIN 2020]

$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $