$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . .
$\frac{{{3^{11}} - 1}}{{11}}$
$\frac{{{2^{11}} - 1}}{{11}}$
$\frac{{{{11}^3} - 1}}{{11}}$
$\frac{{{{11}^2} - 1}}{{11}}$
$(1 + t^2)^{25} (1 + t^{25}) (1 + t^{40}) (1 + t^{45}) (1 + t^{47})$ ના વિસ્તરણમાં $t^{50}$ નો સહગુણક મેળવો
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
વિસ્તરણમાં $\alpha ^t$ નો સહગુણક મેળવો.
જ્યાં $\alpha \ne - q$ અને $p \ne q$
જો ${C_r}$ એ $^n{C_r}$ દર્શાવે છે તો , $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$ મેળવો. (કે જ્યાં $n$ એ યુગ્મ પુર્ણાક છે )
જો $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ ના દ્વિપદી વિસ્તરણમાં ધન ધાતવાળા તમામ $x$ ના સહગુણકોનો સરવાળો $939$ હોય, તો $n$ ની તમામ શક્ય પૂણાંક કિંમતોનો સરવાળો $\dots\dots\dots$ છે.