${(1 + x)^n}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.
${2^n} + 1$
${2^n} - 1$
${2^n}$
${2^{n - 1}}$
$(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + ...... + x^{100})$ ના વિસ્તરણમાં બહુપદીનો ઘાતાંક મેળવો
જો $C_{x} \equiv^{25} C_{x}$ અને $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ હોય તો $\mathrm{k}$ મેળવો.
ધારો કે $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ અને $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. છે. જો $5 \alpha=6 \beta$, હોય તો $n$=...........................
જો ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ ના વિસ્તરણમાં પદોની સંખ્યા $28$ છે,તો આ વિસ્તરણમાંના બધાજ પદોના સહગુણકોનો સરવાળો . . . . છે.
જો ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$ હોય તો $k$ ની કિમત મેળવો.