$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
$\frac{{{2^n}}}{{n + 1}}$
$\frac{{{2^n} - 1}}{{n + 1}}$
$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$
None of these
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
The sum of the coefficients of three consecutive terms in the binomial expansion of $(1+ x )^{ n +2}$, which are in the ratio $1: 3: 5$, is equal to
The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is
The sum of coefficients in ${(1 + x - 3{x^2})^{2134}}$ is