$|{z_1} + {z_2}|\, = \,|{z_1}| + |{z_2}|$ संभव है यदि
${z_2} = {\overline z _1}$
${z_2} = \frac{1}{{{z_1}}}$
$arg\,({z_1}) = arg ({z_2})$
$|{z_1}|\, = \,|{z_2}|$
माना $z _{1}$ तथा $z _{2}$ कोई दो शून्येतर सम्मिश्र संख्याएँ इस प्रकार हैं कि $3\left| z _{1}\right|=4\left| z _{2}\right|$ है। यदि $z =\frac{3 z _{1}}{2 z _{2}}+\frac{2 z _{2}}{3 z _{1}}$ हो, तो
यदि $z$ पूर्णत: अधिकल्पित संख्या इस प्रकार हो कि ${\mathop{\rm Im}\nolimits} (z) < 0$, तब $arg\,(z)$=
माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है
यदि समुच्चय $\left\{\operatorname{Re}\left(\frac{\mathrm{z}-\overline{\mathrm{z}}+\mathrm{z} \overline{\mathrm{z}}}{2-3 \mathrm{z}+5 \overline{\mathrm{z}}}\right): \mathrm{z} \in \mathbb{C}, \operatorname{Re}(\mathrm{z})=3\right\}$ अंतराल $(\alpha, \beta]$ के बराबर है, तो $24(\beta-\alpha)$ का मान है:
$z$ का वह मान जिसके लिए $|z + i|\, = \,|z - i|$ है