यदि $z$ पूर्णत: अधिकल्पित संख्या इस प्रकार हो कि ${\mathop{\rm Im}\nolimits} (z) < 0$, तब  $arg\,(z)$=

  • A

    $\pi $

  • B

    $\frac{\pi }{2}$

  • C

    $0$

  • D

    $ - \frac{\pi }{2}$

Similar Questions

समीकरण ${z^2} + \bar z = 0$ के हलों की संख्या है

यदि $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ तो $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=

माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा

माना एक सम्मिश्र संख्या $z$ इस प्रकार है कि $| z |+ z =3+ i ($ जहाँ $i =\sqrt{-1})$, तो $| z |$ बराबर है 

  • [JEE MAIN 2019]

यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो

  • [JEE MAIN 2022]