$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
$ - \frac{1}{2}$
$\frac{1}{2}$
$1$
$ - 1$
$z$ का वह मान जिसके लिए $|z + i|\, = \,|z - i|$ है
यदि $\alpha $ व $\beta $ भिन्न सम्मिश्र संख्याएँ इस प्रकार हैं कि $|\beta | = 1$, तब $\left| {\frac{{\beta - \alpha }}{{1 - \alpha \beta }}} \right|$ =
यदि $|{z_1}|\, = \,|{z_2}|$ तथा $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, तब ${z_1} + {z_2}$बराबर है
यदि ${z_1},{z_2}$एवं ${z_3}$तीन सम्मिश्र संख्याऐं इस प्रकार हैं कि $|{z_1}|\, = \,|{z_2}|\, = \,|{z_3}|\, = $$\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ तब${\rm{ }}|{z_1} + {z_2} + {z_3}|$ का मान है
यदि $\frac{3+ i \sin \theta}{4- i \cos \theta}, \theta \in[0,2 \pi]$, एक वास्तविक संख्या है, तो $\sin \theta+i \cos \theta$ का एक कोणांक (argument) है