यदि $|{z_1}|\, = \,|{z_2}|$ तथा $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, तब ${z_1} + {z_2}$बराबर है
$0$
पूर्णत: अधिकल्पित
पूर्णत: वास्तविक
इनमें से कोई नहीं
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
यदि$z$ एक सम्मिश्र संख्या हो, तो निम्न में से कौन सा सम्बन्ध सत्य नहीं है
$\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ का कोणांक और मापांक है
यदि ${z_1},{z_2}$ तथा ${z_3},{z_4}$ संयुग्मी सम्मिश्र संख्याओं के दो युग्म हैं, तब $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$बराबर है
माना कि $z$ एक शून्येतर काल्पनिक भाग (non-zero imaginary part) वाली सम्मिश्र संख्या (complex number) है। यदि $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ एक वास्तविक संख्या (real number) है, तब $|z|^2$ का मान. . . . .है।