Express the following in the form $\frac {p}{q}$, where $p$ and $q$ are integers and $q \ne 0$.
$(i)$ $0 . \overline{6}$
$(ii)$ $0 . 4\overline{7}$
$(iii)$ $0 . \overline{001}$
$(i)$ Let $x=0 . \overline{6}=0.6666 \ldots$
since, there is one repeating digit.
$\therefore$ We multiply both sides by $10$,
$10 x =(0.666 \ldots) \times 10$ or $10 x =6.6666 \ldots$
$\therefore \quad 10 x - x =6.6666 \ldots-0.6666 \ldots $ or $\quad 9 x =6$
or $\quad x=\frac{6}{9}=\frac{2}{3}$
Thus, $\quad 0 . \overline{6}=\frac{2}{3}$
$(ii)$ Let $\quad x=0.4 \overline{7}=0.4777 \ldots$
$\therefore $ $10 x=10 \times(0.4777 \ldots)$
or $10 x=4.777$ ........... $(1)$
and $100 x=47.77$ ........... $(2)$
Subtracting $(1)$ from $(2)$, we have
$100 x-10 x=(47.777 \ldots)-(4.777 \ldots)$
$90 x=43$ or $x=\frac{43}{90}$
Thus, $\quad 0.4 \overline{7}=\frac{43}{90}$
$(iii)$ Let $x=0 . \overline{001}=0.001001$ ......... $(1)$
Here, we have three repeating digits after the decimal point, therefore we multiply by $1000.$
$\therefore $ $1000 x =1000 \times(0 . \overline{001})=1000 \times 0.001001 \ldots$
Or $1000 x =1.001001$
Subtracting $(1)$ from $(2)$, we have
$1000 x - x =(1.001 \ldots)-(0.001 \ldots)$
or $999 x=1$ $\therefore $ $x=\frac{1}{999}$
Thus, $0 . \overline{001}=\frac{1}{999}$
Find the decimal expansions of $\frac{10}{3},\, \frac{7}{8}$ and $\frac{1}{7}$.
Show that $0.3333... =$ $0 . \overline{3}$ can be expressed in the form $\frac {p }{q }$ , where $p$ and $q$ are integers and $q \ne 0$.
Find six rational numbers between $3$ and $4$.
Are the following statements true or false ? Give reasons for your answers.
$(i)$ Every whole number is a natural number.
$(ii)$ Every integer is a rational number.
$(iii)$ Every rational number is an integer.
Visualize the representation of $5.3 \overline{7}$. on the number line upto $5$ decimal places, that is, up to $5.37777$.