निम्नलिखित के प्रसार में व्यापक पद लिखिए

$\left(x^{2}-y\right)^{6}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that the general term ${T_{r + 1}}{\rm{ \{ }}$ which is the ${(r + 1)^{th}}$ term $\} $ in the binomial expansion of $(a+b)^{n}$ is given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is

${T_{r + 1}} = {\,^6}{C_r}{\left( {{x^2}} \right)^{6 - r}}{( - y)^r} = {( - 1)^r}{\,^6}{C_r}{x^{12 - 2r}}{y^r}$

Similar Questions

यदि $(1+x)^{ n }$ के द्विपद विस्तार में तीन क्रमिक पदों के गुणांकों में $1: 7: 42$ का अनुपात है, तो इन में से विस्तार में पहला पद है

  • [JEE MAIN 2015]

$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$ के प्रसार में पूर्णांक पदों की संख्या है

  • [JEE MAIN 2023]

${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में  $x$ से स्वतंत्र पद है   

यदि $\left(x+x^{\log _{2} x}\right)^{7}$ के प्रसार में चौथा पद $4480$ है, तो $x ( x \in N )$ का मान है

  • [JEE MAIN 2021]

यदि $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ द्विपद प्रसार में $x ^{10}$ का गुणांक $5^{ k } l$ है जहां $l, k \in N$ और $l$ की 5 सह-अभाज्य संख्याऐं है तब $k$ का मान होगा।

  • [JEE MAIN 2022]