જ્યારે $10$ અવલોકન લખવામાં આવે ત્યારે એક વિધ્યાર્થી $25$ ની બદલે $52$ લખી નાખે છે અને તેને મધ્યક અને વિચરણ અનુક્રમે $45$ અને $16$ મળે છે તો સાચો મધ્યક અને વિચરણ મેળવો
Given $n=10, \bar{x}=45$ and $\sigma^{2}=16$
$\begin{array}{c}\bar{x}=45 \Rightarrow \frac{\Sigma x_{i}}{n}=45 \\\Rightarrow \quad \frac{\Sigma x_{i}}{10}=45 \Rightarrow \quad \Sigma x_{i}=450 \\\text { Corrected } \Sigma x_{i}=450-52+25=423\end{array}$
$\therefore \quad$ Corrected mean, $\bar{x}=\frac{423}{10}=42.3$
$\Rightarrow \quad \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}$
$\begin{array}{ll}\Rightarrow & 16=\frac{\Sigma x_{i}^{2}}{10}-(45)^{2} \\ \Rightarrow & \Sigma x_{i}^{2}=20410\end{array}$
$\therefore \quad$ Corrected $\Sigma x_{i}^{2}=20410-(53)^{2}+(25)^{2}=18331$
And Corrected $\sigma^{2}=\frac{18331}{10}-(42.3)^{2}=43.81$
ધારોકે વર્ગ $A$ના $100$ વિદ્યાર્થીઓના ગુણનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $40$ અને $\alpha( > 0)$ છે તથા વર્ગ $B$ના $n$ વિદ્યાર્થીઓના ગુણનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $55$ અને $30-\alpha$ છે.જો $100+n$ના સંયુક્ત વર્ગના ગુણોનો મધ્યક અને વિચરણ અનુક્રમે $50$ અને $350$ હોય,તો વર્ગ $A$ અને વર્ગ $B$ના વિચરણનો સરવાળો $...........$ છે.
જો $n$ અવલોકનો ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ છે અને તેમાંનો સમાંતર મધ્યક $\bar x$ છે અને ${\sigma ^2}$ એ વિચરણ છે.
વિધાન $1$ : $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નું વિચરણ $4{\sigma ^2}$ છે.
વિધાન $2$: $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ નો સમાંતર મધ્યક $4\bar x$ છે.
$20$ અવલોકનોનું વિચરણ $5$ છે. જો પ્રત્યેક અવલોકનને $2$ વડે ગુણવામાં આવે, તો પ્રાપ્ત થયેલ અવલોકનો માટે નવું વિચરણ શોધો.
$5$ પદો ધરાવતી શ્રેણીનો મધ્યક અને વિચરણ અનુક્રમે $8$ અને $24 $ છે. $3$ પદો ધરાવતી બીજી શ્રેણીનો મધ્યક અને વિચરણ અનુક્રમે $8 $ અને $24$ છે. તેમની સંયુક્ત શ્રેણીઓનો વિચરણ શું થશે ?
$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................