$a, a + d, a + 2d, ……, a + 2nd$  શ્રેણીનું વિચરણ શોધો.

  • A

    $\frac{{n(n\, + \,\,1)}}{2}\,{d^2}$

  • B

    $\frac{{n(n\, + \,\,1)}}{3}\,{d^2}$

  • C

    $\frac{{n(n\, + \,\,1)}}{6}{d^2}$

  • D

    $\frac{{n(n\, + \,\,1)}}{{12}}\,{d^2}$

Similar Questions

જો $\sum\limits_{i\, = \,1}^{18} {({x_i}\, - \,\,8)\,\, = \,\,9} $ અને  $\,\sum\limits_{i\, = \,1}^{18} {{{({x_i}\, - \,\,8)}^2}\, = \,\,45} ,\,$ હોય, તો $\,{{\text{x}}_{\text{1}}},\,\,{x_2},\,........\,\,{x_{18}}$ નું પ્રમાણિત વિચલન શોધો . 

આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ  $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
આવૃત્તિ  $5$ $8$ $15$ $16$ $6$

વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય 
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય 

  • [AIEEE 2012]

એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :

વિષય

ગણિત  ભૌતિકશાસ્ત્ર

રસાયણશાસ્ત્ર

મધ્યક  $42$ $32$ $40.9$
પ્રમાણિત વિચલન  $12$ $15$ $20$

કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ? 

જો વિતરણના વિચરણ અને પ્રમાણિત વિચલનનો સહગુણક અનુક્રમે $50\%$  અને $20\%$  હોય તો તેનો મધ્યક શું થાય ?