$a, a + d, a + 2d, ……, a + 2nd$ શ્રેણીનું વિચરણ શોધો.
$\frac{{n(n\, + \,\,1)}}{2}\,{d^2}$
$\frac{{n(n\, + \,\,1)}}{3}\,{d^2}$
$\frac{{n(n\, + \,\,1)}}{6}{d^2}$
$\frac{{n(n\, + \,\,1)}}{{12}}\,{d^2}$
એક $x$ પરના પ્રયોગના $15$ અવલોકન છે કે જેથી $\sum {x^2} = 2830$, $\sum x = 170$.જો આપેલ અવલોકનમાંથી અવલોકન $20$ ખોટુ છે અને તેના બદલામાં અવલોકન $30$ લેવામાં આવે છે તો નવી માહિતીનું વિચરણ મેળવો.
$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
વિચલ $x$ અને $u $ એ $u\,\, = \,\,\frac{{x\,\, - \,\,a}}{h}$વડે સંબંધીત હોય તો $\sigma_x$ અને $\sigma_u$ વચ્ચેનો સાચો સંબંધ $= …….$
એક $60$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $650$ કલાકો અને પ્રમાણિત વિચલન $8$ કલાકો છે બીજા $80$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $660$ કલાકો અને પ્રમાણિત વિચલન $7$ કલાકો છે તો બધાનું પ્રમાણિત વિચલન કેટલું થાય ?
જે $10$ પ્રાકૃતિક સંખ્યાઓ $1, 1, 1,...., 1,k$ નું વિચરણ $10$ કરતા ઓછું હોય, તો $k$ની શક્ય મહત્તમ કિંમત ...... છે.