શ્રેણી $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$. નું કેટલામું પદ $\frac{1}{19683}$ થાય ?
The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} \dots$
Here, $a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$
Let the $n^{t h}$ term of the given sequence be $\frac{1}{19683}$
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$
એક સમગુણોત્તર શ્રેણીનાં પદોની સંખ્યા યુગ્મ છે. જો બધાં જ પદોનો સરવાળો, અયુગ્મ સ્થાને રહેલ પદોના સરવાળા કરતાં $5$ ગણો હોય, તો સામાન્ય ગુણોત્તર શોધો.
જો સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $S_n$ હોય, જેનું પ્રથમ $a$ પદ અને સામાન્ય ગુણોતર $r$ તો $S_1 + S_3 + S_5 + … + S_{2n-1}$ નો સરવાળો કેટલો થાય ?
અહી $a$ અને $b$ ની શુન્યેતર વાસ્તવિક કિમતોની બે જોડો છે i.e. $(a_1,b_1)$ અને $(a_2,b_2)$ જ્યાં $2a+b,a-b,a+3b$ એ સમગુણોત્તર શ્રેણીના ત્રણ ક્રમિક પદો હોય તો $2(a_1b_2 + a_2b_1) + 9a_1a_2$ ની કિમત મેળવો
જો સમગુણોતર શ્નેણીના પદ ધન હેાય અને દરેક પદએ તેની આગળના બે પદોના સરવાળા બરાબર હેાય તો સામાન્ય ગુણોતર મેળવો.
જો સમગુણોત્તર શ્રેણીના દ્વિતીય, તૃતીય અને ચતુર્થ ધન પદોનો સરવાળો $3$ અને તેનો છઠ્ઠું, સાતમું અને આઠમા પદોનો સરવાળો $243$ હોય તો આ શ્રેણીમાં પ્રથમ $50$ પદો સુધીનો સરવાળો કેટલો થાય ?