Which term of the following sequences:
$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$ is $\frac{1}{19683} ?$
The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} \dots$
Here, $a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$
Let the $n^{t h}$ term of the given sequence be $\frac{1}{19683}$
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$
Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to
The sum of first three terms of a $G.P.$ is $16$ and the sum of the next three terms is
$128.$ Determine the first term, the common ratio and the sum to $n$ terms of the $G.P.$
Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?
Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{px}^2+\mathrm{qx}-$ $r=0$, where $p \neq 0$. If $p, q$ and $r$ be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^2$ is :