જો સમગુણોત્તર શ્રેણીના $n$ પદોનો સરવાળો $S_n$ હોય, જેનું પ્રથમ $a$ પદ અને સામાન્ય ગુણોતર $r$ તો $S_1 + S_3 + S_5 + … + S_{2n-1}$ નો સરવાળો કેટલો થાય ?

  • A

    $\frac{{2a}}{{1 - r}}\,\left[ {n - r.\,\frac{{1\, - \,{r^{2n}}}}{{1\, - \,{r^2}}}} \right]$

  • B

    $\frac{{3a}}{{1 - r}}\,\left[ {n - r.\,\frac{{1\, - \,{r^{2n}}}}{{1\, - \,{r^2}}}} \right]$

  • C

    $\frac{a}{{1 - r}}\,\left[ {n - r.\,\frac{{1\, - \,{r^{2n}}}}{{1\, - \,{r^2}}}} \right]$

  • D

    આપેલ પૈકી એકપણ નહિ.

Similar Questions

સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$

જો $a$ અને $b$ નો સમગુણોત્તર મધ્યક $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ હોય, તો નું મૂલ્ય શોધો. 

એક $'n$' બાજુ વાળો બહુકોણના અંતર્ગત ખૂણાઓ સમગુણોત્તર શ્રેણીમાં છે જેથી સૌથી નાનો ખૂણો  $1^o $ અને સામાન્ય ગુણોત્તર $2^o $ હોય તો $'n'$ ની શક્ય કિમત મેળવો 

જો સમગુણોત્તર શ્રેણીનું પહેલું પદ $1$ અને તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો $90$ હોય તો સામાન્ય ગુણોત્તર  મેળવો.

જો  $a_{1}, a_{2}, a_{3}, \ldots$ એ સમગુણોતર શ્રેણીમાં છે કે જેથી $a_{1}<0$ ; $a_{1}+a_{2}=4$ અને  $a_{3}+a_{4}=16.$ જો  $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ તો $\lambda$ મેળવો.

  • [JEE MAIN 2020]