Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?

  • [KVPY 2009]
  • A

    $0$

  • B

    $6$

  • C

    $1+x$

  • D

    $1+x+x^2+x^3+x^4$

Similar Questions

If $x, {G_1},{G_2},\;y$ be the consecutive terms of a $G.P.$, then the value of ${G_1}\,{G_2}$ will be

Find the $10^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $5,25,125, \ldots$

For $0<\mathrm{c}<\mathrm{b}<\mathrm{a}$, let $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^2+(\mathrm{b}+\mathrm{c}-2 \mathrm{a}) \mathrm{x}$ $+(c+a-2 b)=0$ and $\alpha \neq 1$ be one of its root. Then, among the two statements

$(I)$ If $\alpha \in(-1,0)$, then $\mathrm{b}$ cannot be the geometric mean of $\mathrm{a}$ and $\mathrm{c}$

$(II)$ If $\alpha \in(0,1)$, then $\mathrm{b}$ may be the geometric mean of $a$ and $c$

  • [JEE MAIN 2024]

The sum of the first $n$ terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ is

  • [IIT 1988]

If $x$ is added to each of numbers $3, 9, 21$ so that the resulting numbers may be in $G.P.$, then the value of $x$ will be