Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{px}^2+\mathrm{qx}-$ $r=0$, where $p \neq 0$. If $p, q$ and $r$ be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^2$ is :

  • [JEE MAIN 2024]
  • A

    $\frac{80}{9}$

  • B

    $9$

  • C

    $\frac{20}{3}$

  • D

    $8$

Similar Questions

Let $a$ and $b$ be roots of ${x^2} - 3x + p = 0$ and let $c$ and $d$ be the roots of ${x^2} - 12x + q = 0$, where $a,\;b,\;c,\;d$ form an increasing G.P. Then the ratio of $(q + p):(q - p)$ is equal to

Let $\left\langle a_n\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{n+2}=5 a_{n+1}-3 a_n, n=0,1,2,3, \ldots \ldots$. Then $\sum_{k=1}^{100} a_k$ is equal to :

  • [JEE MAIN 2025]

Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$

If ${s_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ........ + \frac{1}{{{2^{n - 1}}}}$ , then the least integral value of $n$ such that $2 - {s_n} < \frac{1}{{100}}$ is

The first term of an infinite geometric progression is $x$ and its sum is $5$. Then

  • [IIT 2004]