Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.

If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to 

  • [JEE MAIN 2020]
  • A

    $225$

  • B

    $175$

  • C

    $300$

  • D

    $150$

Similar Questions

The sum of the series $5.05 + 1.212 + 0.29088 + ...\,\infty $ is

If the sum and product of four positive consecutive terms of a $G.P.$, are $126$ and $1296$, respectively, then the sum of common ratios of all such $GPs$ is $.........$.

  • [JEE MAIN 2023]

If the range of $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite $G.P.$, whose first term is $64$ and the common ratio is $\frac{\alpha}{\beta}$, is equal to...........

  • [JEE MAIN 2024]

Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?

  • [KVPY 2009]

The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in