Which of the following relations is correct
$\sin 1 < \sin 1^\circ $
$\sin 1 > \sin 1^\circ $
$\sin 1 = \sin 1^\circ $
$\frac{\pi }{{180}}\sin \,\,\,1\, = \sin \,\,\,{1^o}$
If in two circles, arcs of the same length subtend angles $60^{\circ}$ and $75^{\circ}$ at the centre, find the ratio of their radii.
$\cos 15^\circ = $
Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$
Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x=\frac{1}{4}, x$ in quadrant $II$
The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to