Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $

  • A

    $\frac{{\hat A \times \hat B}}{{AB\,\sin \theta }}$

  • B

    $\frac{{\hat A \times \hat B}}{{AB\,\cos \theta }}$

  • C

    $\frac{{\overrightarrow A \times \overrightarrow B }}{{AB\,\sin \theta }}$

  • D

    $\frac{{\overrightarrow A \times \overrightarrow B }}{{AB\,\cos \theta }}$

Similar Questions

Two vectors $A$ and $B$ have equal magnitude $x$. Angle between them is $60^{\circ}$. Then, match the following two columns.
colum $I$ colum $II$
$(A)$ $|A+B|$ $(p)$ $\frac{\sqrt{3}}{2} x$
$(B)$ $|A-B|$ $(q)$ $x$
$(C)$ $A \cdot B$ $(r)$ $\sqrt{3} x$
$(D)$ $|A \times B|$ $(s)$ None

Vector $P =6 \hat{ i }+4 \sqrt{2} \hat{ j }+4 \sqrt{2} \hat{ k }$ makes angle from $z$-axis equal to

If $A =a_1 \hat{ i }+b_1 \hat{ j }$ and $B =a_2 \hat{ i }+b_2 \hat{ j }$, the condition that they are perpendicular to each other is

The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]

If $|\overrightarrow A \times \overrightarrow B |\, = \,|\overrightarrow A \,.\,\overrightarrow B |,$ then angle between $\overrightarrow A $ and $\overrightarrow B $ will be ........ $^o$

  • [AIIMS 2000]