Which of the following is the unit vector perpendicular to $\overrightarrow A $ and $\overrightarrow B $
$\frac{{\hat A \times \hat B}}{{AB\,\sin \theta }}$
$\frac{{\hat A \times \hat B}}{{AB\,\cos \theta }}$
$\frac{{\overrightarrow A \times \overrightarrow B }}{{AB\,\sin \theta }}$
$\frac{{\overrightarrow A \times \overrightarrow B }}{{AB\,\cos \theta }}$
colum $I$ | colum $II$ |
$(A)$ $|A+B|$ | $(p)$ $\frac{\sqrt{3}}{2} x$ |
$(B)$ $|A-B|$ | $(q)$ $x$ |
$(C)$ $A \cdot B$ | $(r)$ $\sqrt{3} x$ |
$(D)$ $|A \times B|$ | $(s)$ None |
The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$
If $|\overrightarrow A \times \overrightarrow B |\, = \,|\overrightarrow A \,.\,\overrightarrow B |,$ then angle between $\overrightarrow A $ and $\overrightarrow B $ will be ........ $^o$