Vector $P =6 \hat{ i }+4 \sqrt{2} \hat{ j }+4 \sqrt{2} \hat{ k }$ makes angle from $z$-axis equal to

  • A
    $\cos ^{-1}\left(\frac{\sqrt{2}}{5}\right)$
  • B
    $\cos ^{-1}(2 \sqrt{2})$
  • C
    $\cos ^{-1}\left(\frac{2 \sqrt{2}}{5}\right)$
  • D
    None of these

Similar Questions

If $\overrightarrow{ F }=2 \hat{ i }+\hat{ j }-\hat{ k }$ and $\overrightarrow{ r }=3 \hat{ i }+2 \hat{ j }-2 \hat{ k }$, then the scalar and vector products of $\overrightarrow{ F }$ and $\overrightarrow{ r }$ have the magnitudes respectively as

  • [NEET 2022]

If for two vector $\overrightarrow A $ and $\overrightarrow B $, sum $(\overrightarrow A + \overrightarrow B )$ is perpendicular to the difference $(\overrightarrow A - \overrightarrow B )$. The ratio of their magnitude is

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$

Explain cross product of two vectors.

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........