If $A =a_1 \hat{ i }+b_1 \hat{ j }$ and $B =a_2 \hat{ i }+b_2 \hat{ j }$, the condition that they are perpendicular to each other is

  • A
    $\frac{a_1}{b_1}=-\frac{b_2}{a_2}$
  • B
    $a_1 b_1=a_2 b_2$
  • C
    $\frac{a_1}{a_2}=-\frac{b_1}{b_2}$
  • D
    None of these

Similar Questions

The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is

The area of the parallelogram determined by $A =2 \hat{ i }+\hat{ j }-3 \hat{ k }$ and $B =12 \hat{ j }-2 \hat{ k }$ is approximately

Define the vector product of two vectors.

If $\vec A = 2\hat i + \hat j - \hat k,\,\vec B = \hat i + 2\hat j + 3\hat k$ and $\vec C = 6\hat i - 2j - 6\hat k$ then the angle between $(\vec A + \vec B)$ and $\vec C$ wil be ....... $^o$

If a vector $\vec A$ is parallel to another vector $\vec B$ then the resultant of the vector $\vec A \times \vec B$ will be equal to