If $|\overrightarrow A \times \overrightarrow B |\, = \,|\overrightarrow A \,.\,\overrightarrow B |,$ then angle between $\overrightarrow A $ and $\overrightarrow B $ will be ........ $^o$
$30$
$45$
$60$
$90$
Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is
If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors
The vectors from origin to the points $A$ and $B$ are $\overrightarrow A = 3\hat i - 6\hat j + 2\hat k$ and $\overrightarrow B = 2\hat i + \hat j - 2\hat k$ respectively. The area of the triangle $OAB$ be
$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$
Explain the geometrical interpretation of scalar product of two vectors.