चित्र में प्रदर्शित स्प्रिंगों से बने निकाय का परिणामी बल नियतांक होगा
$\frac{{{K_1}}}{2} + {K_2}$
${\left[ {\frac{1}{{2{K_1}}} + \frac{1}{{{K_2}}}} \right]^{ - 1}}$
$\frac{1}{{2{K_1}}} + \frac{1}{{{K_2}}}$
${\left[ {\frac{2}{{{K_1}}} + \frac{1}{{{K_1}}}} \right]^{ - 1}}$
जब $m$ द्रव्यमान को किसी स्प्रिंग से जोड़ा जाता है तो इसकी लम्बाई में $0.2$ मीटर की वृद्धि हो जाती है। $m$ द्रव्यमान को थोड़ा सा अतिरिक्त खींच कर छोड़ देने पर इसका आवर्तकाल होगा
दिये गये चित्र में $\mathrm{M}$ द्रव्यमान के गुटके की सरल आवर्त गति का आवर्तकाल $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ है, जहाँ $\alpha$ का मान. . . . . . . . . . है।
चित्रानुसार एक द्रव्यमान $M$ दो स्प्रिंगों $A$ तथा $B$ से चित्रानुसार लटकाया गया है। स्प्रिंगों के बल नियतांक क्रमषः $K_1$ तथा $K_2$ हैं। दोनों स्प्रिंगों की लम्बाई में कुल वृद्धि है
$K$ बल नियतांक वाली एक स्प्रिंग का एक-चौथाई भाग काट कर अलग कर दिया जाता है। शेष स्प्रिंग का बल नियतांक होगा
चित्र में दिखाये गये द्वि-स्प्रिंग निकाय का प्रभावी स्प्रिंग नियतांक होगा