यदि पाँच प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{24}{5}$ तथा $\frac{194}{25}$ हैं तथा प्रथम चार प्रेक्षणों का माध्य $\frac{7}{2}$, है, तो प्रथम चार प्रेक्षणों का प्रसरण बराबर है
$\frac{4}{5}$
$\frac{77}{12}$
$\frac{5}{4}$
$\frac{105}{4}$
$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं
माना $12$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{9}{2}$ तथा $4$ हैं। बाद में यह पाया गया कि दो प्रेक्षणों $7$ तथा $14$ के स्थान पर क्रमशः $9$ तथा $10$ ले लिए गए थे। यदि सही प्रसरण $\frac{\mathrm{m}}{\mathrm{n}}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ सहअभाज्य हैं, तो $\mathrm{m}+\mathrm{n}$ बराबर है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
छात्रों द्वारा एक परीक्षा में प्राप्त अंकों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ है। बाद में एक छात्र के अंक $8$ से बढ़ाकर $12$ किए जाते है। यदि अंकों का नया माध्य $10.2$ है, तो उनका नया प्रसरण है :