$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
चार पत्ते एक ही प्रकार $(suit)$ के हैं ?
There will be as many ways of choosing $4$ cards from $52$ cards as there are combinations of $52$ different things, taken $4$ at a time. Therefore
The required number of ways $=\,\,^{52} C _{4}=\frac{52 !}{4 ! 48 !}=\frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$
$=270725$
There are four suits: diamond, club, spade, heart and there are $13$ cards of each suit. Therefore, there are $^{13} C _{4}$ ways of choosing $4$ diamonds. Similarly, there are $^{13} C _{4}$ ways of choosing $4$ clubs, $^{13} C _{4}$ ways of choosing $4$ spades and $^{13} C _{4}$ ways of choosing $4$ hearts. Therefore
The required number of ways $=\,^{13} C _{4}+^{13} C _{4}+^{13} C _{4}+^{13} C _{4}$
$=4 \times \frac{13 !}{4 ! 9 !}=2860$
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
चार पत्ते चार, भिन्न प्रकार $(suit)$ के हैं ?
यदि $^n{P_3}{ + ^n}{C_{n - 2}} = 14n$, तो $n = $
एक चुनाव में $5$ उम्मीदवार हैं एवं तीन रिक्त स्थान हैं। एक मतदाता अधिकतम तीन उम्मीदवारों को मत दे सकता है, तो मतदाता कुल कितने प्रकार से मत दे सकता है
यदि $^{n + 1}{C_3} = 2{\,^n}{C_2},$ तो $n =$
$^{47}{C_4} + \mathop \sum \limits_{r = 1}^5 {}^{52 - r}{C_3} = $