Visualise $4. \overline{26}$ . on the number line, up to $4$ decimal places.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We can magnify an interval endlessly using successive magnification.

To visualize $4 . \overline{26}$ or $4.2626 \ldots$ on the number line up to $4$ decimal places, we use the following steps.

$I$. The number $4.2626 \ldots$ lies between $4$ and $5 .$ Divide the interval $[4,\,5]$ in $10$ smaller parts :

$II.$ Obviously, the number $4.2626 \ldots$ lies between $4.2$ and $4.3 .$ We magnify the interval $[4.2,\,4.3]$.

$III.$ Next, we magnify the interval $[4.26, \,4.27]$ :

$IV.$ Finally magnify the interval $[4.262,\,4.263]$ :

In Fig. $(iv)$, we can easily observe the number $4.2626 \ldots$ or $4 . \overline{26}$.

1098-s30

Similar Questions

Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0),$ where $p$ and $q$ are integers with no common factors other than $1$ and having terminating decimal representations (expansions). Can you guess what property $q$ must satisfy ?

Simplify the following expressions :

$(i)$ $(5+\sqrt{7})(2+\sqrt{5})$

$(ii)$ $(5+\sqrt{5})(5-\sqrt{5})$

$(iii)$ $(\sqrt{3}+\sqrt{7})^{2}$

$(iv)$ $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$

Rationalise the denominators of the following :

$(i)$ $\frac{1}{\sqrt{7}}$

$(ii)$ $\frac{1}{\sqrt{7}-\sqrt{6}}$

$(iii)$ $\frac{1}{\sqrt{5}+\sqrt{2}}$

$(iv)$ $\frac{1}{\sqrt{7}-2}$

State whether the following statements are true or false. Give reasons for your answers.

$(i)$ Every natural number is a whole number.

$(ii)$ Every integer is a whole number.

$(iii)$ Every rational number is a whole number

Visualize the representation of $5.3 \overline{7}$. on the number line upto $5$ decimal places, that is, up to $5.37777$.