Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=x^{2}-1, \,x=1,\,-1$
If $x=1$ and $x=-\,1$ are zeroes of polynomial $p(x)=x^{2}-1,$ then $p(1)$ and $p(-1)$ should be $0$ .
Here, $p (1)=(1)^{2}-1=0,$ and $p (-1)$
$=(-1)^{2}-1=0$
Hence, $x=1$ and $-1$ are zeroes of the given polynomial.
Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.
Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$
Factorise : $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
Evaluate using suitable identities : $(999)^{3}$