Find the remainder obtained on dividing $p(x)=x^3+1$ by $x+1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By long division,

$\overset{\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{2}}-x+1}{\mathop{x+1\sqrt{\begin{align}
  & {{x}^{3}}+1 \\ 
 & {{x}^{3}}\pm {{x}^{2}} \\ 
\end{align}}}}\,$

             $\_\_\_\_\_\_\_\_\_\_\_\_\_$

             $-{{x}^{2}}+1$

             $\mp {{x}^{2}}\pm {{x}}$

            $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

                   $x+1$

                  $- x \pm 1$

             $\_\_\_\_\_\_\_\_\_\_\_\_\_\_$

                       $0$

So, we find that the remainder is $0$.

Here $p(x) = x^3 + 1$, and the root of $x + 1 = 0$ is $x = -1$. We see that

$p(-1) = (-1)^3 + 1$

$= -1 + 1 $

$= 0$

Similar Questions

Find $p(0)$, $p(1)$ and $p(2)$ for  of the following polynomials : $p(y)=y^{2}-y+1$

Factorise $: 8 x^{3}+y^{3}+27 z^{3}-18 x y z$

Write the following cubes in expanded form : $\left[\frac{3}{2} x+1\right]^{3}$

What are the possible expressions for the dimensions of the cuboids whose volumes are given below?$\boxed{\rm {Volume}\,:12 k y^{2}+8 k y-20 k}$

Evaluate the following products without multiplying directly : $104 \times 96$