Find the zero of the polynomial : $p(x) = 3x -2$
$\frac{2}{3}$
$2$
$3$
$\frac{3}{2}$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=x^{2}+x+k$.
Factorise : $49 a^{2}+70 a b+25 b^{2}$
Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$
Verify whether $2$ and $0$ are zeroes of the polynomial $x^{2}-2 x$.
If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.