$[2, 4]$ પર વ્યાખ્યાયિત વિધેય $f(x)=x^{2}$ માટે $[2, 4]$ પર મધ્યકમાન પ્રમેય ચકાસો.
The function $f(x)=x^{2}$ is continuous in $[2,4]$ and differentiable in $(2,4)$ as its derivative $f^{\prime}(x)=2 x$ is defined in $(2,4).$
Now, $\quad f(2)=4$ and $f(4)=16 .$ Hence
$\frac{f(b)-f(a)}{b-a}=\frac{16-4}{4-2}=6$
$\mathrm{MVT}$ states that there is a point $c \in(2,4)$ such that $f^{\prime}(c)=6 .$ But $f^{\prime}(x)=2 x$ which implies $c=3 .$ Thus at $c=3 \in(2,4),$ we have $f^{\prime}(c)=6$
વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.
જો $ f(x) = x^{\alpha} logx, x > 0, f(0) = 0 $ અને $ x \in [0, 1]$ રોલના પ્રમેયનું પાલન કરે, હોય તો $\alpha =$ કેટલા થાય ?
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.
જો વિધેયો $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ અને $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ ને સામાન્ય યરમ બિંદુ $(extreme\,point)$ હોય, તો $a+2 b+7=...........$
દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો.
વિધાન $- 1 : (0, 1)$ અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.
વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$ માટે રોલનો પ્રમેય લાગુ પાડી શકાય.