અવલોકનો $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ નો વિચરણ મેળવો. 

  • A

    $\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{100}}$

  • B

    $\frac{{11\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{11}}$

  • C

    $\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{100}}$

  • D

    $\frac{{11.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{121}}$

Similar Questions

ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે. 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

 જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$

  • [JEE MAIN 2023]

$6$ અવલોકનો $a$, $b,$ $68,$ $44,$ $48,$ $60$ ના મધ્યક અને વિચરણ અનુક્કમે $55$ અને $194$ છે. જો $a > b,$ તો $a +$ $3 b=$..........................

  • [JEE MAIN 2024]

ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.

વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.

વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$  નો સમાંતર મધ્યક $4\,\bar x$છે.

ધારોકે $S$ અને $a_1$ ના તમામ મૂલ્યોનો એવો ગણ છે કે જેના માટે $100$ ક્રમિક ધન પૂર્ણાંકો $a_1, a_2, a_3, \ldots, a_{100}$ નું મધ્યક સાપેક્ષ સરેરાશ વિચલન $25$ છે. તો $S$ એ $............$ છે.

  • [JEE MAIN 2023]

$10$ અવલોકનનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.

  • [JEE MAIN 2020]