અવલોકનો $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ નો વિચરણ મેળવો.
$\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{100}}$
$\frac{{11\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{11}}$
$\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{100}}$
$\frac{{11.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{121}}$
$10$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $8$ છે.ત્યાર બાદ,એવું જોવામાં આવ્યું કે એક અવલોકન $40$ ને બદલે ભૂલથી $50$ નોંધવામાં આવેલ હતું. તો સાચું વિચરણ $........$ છે.
ધારોકે માહિતી
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
આવૃતિ $(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
નો મધ્યક $5$ છે.જો માહિતીના મધ્યક સાપેક્ષ સરેરાશ વિચલન અને વિચરણ અનુક્રમે $m$ અને $\sigma^2$ હોય, તો $\frac{3 \alpha}{m+\sigma^2}=........$
જો $1,2,3, \ldots ., n$, (જ્યાં $n$ અયુગ્મ છે.) નો મધ્યકથી સરેરાશ વિચલન $\frac{5(n+1)}{n}$ હોય, તો $n$ = ............
નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?
ગુણ |
$10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
સમૂહ $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
સમૂહ $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
$5$ પદો ધરાવતી શ્રેણીનો મધ્યક અને વિચરણ અનુક્રમે $8$ અને $24 $ છે. $3$ પદો ધરાવતી બીજી શ્રેણીનો મધ્યક અને વિચરણ અનુક્રમે $8 $ અને $24$ છે. તેમની સંયુક્ત શ્રેણીઓનો વિચરણ શું થશે ?