Variance of $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ is
$\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{100}}$
$\frac{{11\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{11}}$
$\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{100}}$
$\frac{{11.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{121}}$
Find the variance and standard deviation for the following data:
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
Let $\mathrm{X}$ be a random variable with distribution.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
If the mean of $X$ is $2.3$ and variance of $X$ is $\sigma^{2}$, then $100 \sigma^{2}$ is equal to :
The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five of the observations are $2,4,10,12,14 .$ Find the remaining two observations.
Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :
For a given distribution of marks mean is $35.16$ and its standard deviation is $19.76$. The co-efficient of variation is..