Variance of $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ is 

  • A

    $\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{100}}$

  • B

    $\frac{{11\,{}^{20}{C_{_{10}}} - {2^{10}}}}{{11}}$

  • C

    $\frac{{10.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{100}}$

  • D

    $\frac{{11.\,{}^{20}{C_{_{10}}} - {2^{20}}}}{{121}}$

Similar Questions

Find the variance and standard deviation for the following data:

${x_i}$ $4$ $8$ $11$ $17$ $20$ $24$ $32$
${f_i}$ $3$ $5$ $9$ $5$ $4$ $3$ $1$

Let $\mathrm{X}$ be a random variable with distribution.

$\mathrm{x}$ $-2$ $-1$ $3$ $4$ $6$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ $\frac{1}{5}$ $\mathrm{a}$ $\frac{1}{3}$ $\frac{1}{5}$ $\mathrm{~b}$

If the mean of $X$ is $2.3$ and variance of $X$ is $\sigma^{2}$, then $100 \sigma^{2}$ is equal to :

  • [JEE MAIN 2021]

The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five of the observations are $2,4,10,12,14 .$ Find the remaining two observations.

Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :

  • [JEE MAIN 2024]

For a given distribution of marks mean is $35.16$ and its standard deviation is $19.76$. The co-efficient of variation is..