જો $x_i $ નું પ્રમાણિત વિચલન $10$ હોય તો ($50 + 5x_i$)નું વિચરણ કેટલું હશે ?
$50$
$250$
$500$
$2500$
પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો
અહી $\mathrm{n}$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે કે જેથી $1,2,3,4, \ldots, \mathrm{n}$ નું વિચરણ $14 $ થાય છે તો $\mathrm{n}$ ની કિમંત મેળવો.
જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
ધારો કે વસ્તી $A $ એ $100 $ અવલોકનો $101, 102, ..... 200$ અને બીજી વસ્તી $B$ એ $100 $ અવલોકનો $151, 152, ...... 250 $ ધરાવે છે. જો $V_A $ અને $V_B$ એ અનુક્રમે બંને વસ્તીઓનું વિચરણ દર્શાવે તો $V_A / V_B$ શું થાય ?
$20$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ જણાયા છે. ફરીથી ચકાસતા, એવું માલુમ થાય છે કે એક અવલોકન $12$ ને બદલે ભૂલથી $8$ લેવામાં આવ્યું હતું તો સાચું પ્રમાણિત વિચલન ............ છે.