બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A =B'$
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that
$B^{\prime}=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3), \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}=A$
Thus, the given statement is true.
બે પાસાંને સાથે ઉછાળવામાં આવે છે તો ઉપરના પૂણાકોનો સરવાળો $5$ થાય તેની સંભાવના.
ત્રણ કુટુંબ પૈકી પ્રત્યેકમાં એક છોકરો અને એક છોકરી છે. પ્રત્યેકમાંથી એક બાળક પસંદ કરતાં, પસંદગીમાં માત્ર છોકરીઓ હોય તેવી ઘટનાના ઘટકો .....
ગણ $\{0,1,2,3 \ldots . .10\}$ માંથી બે પૂણાંકો $x$ અને $y$ પૂરવણી સહિત પસંદ કરવામાં આવે છે. તો $|x-y|>5$ ની સંભાવના.....................છે.
એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
એક અવિભાજ્ય સંખ્યા આવે.
નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક સિક્કાને ત્રણ વાર ઉછાળવામાં આવે છે.